إنتاج جسيمات الفضة النانوية المُصنَّعة حيوياً من فطر Metarhizium anisopliae لمعالجة الملوثات النفطية في الماء
محتوى المقالة الرئيسي
الملخص
في هذه الدراسة تم استخدام طريقة حيوية لتحضير جزيئات الفضة النانوية (AgNPs) من مستخلص فطر Metarhizium anisopliae. تم التعرف على خصائص AgNPs المحضرة باستخدام جهاز تحليل امتصاصية الطيف بالأشعة الضوئية والاشعة فوق البنفسجية، جهاز التحليل الطيفي بالأشعة تحت الحمراء. تم تحديد شكل وحجم وتوزيع الشحنات على جسيمات الفضة النانوية باستخدام المجهر الالكتروني الماسح وتحليل جهد زيتا. أظهر تحليل النشاط الحيوية لجسيمات الفضة النانوية فعاليتها في معالجة الملوثات بنسبة أكثر من 93 % من وزن نفط الخام في عينات المياه الملوثة. اذ تحولت كتلة النفط الخام في الماء بشكل فعال إلى كتلة هلامية فاقدة لقوامها واستحلابها، مقارنة بعينة النفط الخام (السيطرة)، بعد سبعة أيام من الحضانة عند درجة حرارة 28 ± 2 م°. تم إجراء التحليل الكيميائي لعينات المياه الملوثة بالنفط الخام المعالجة وغير المعالجة بالدقائق النانوية باستخدام تقنية كروماتوغرافيا الغاز- الكتلة (GC-MASS chromatography). أظهرت النتائج ظهور55 قمة بيانية (كل قمة بيانية تشير الى مركب كيميائي) في نموذج السيطرة بينما اختفت 51 قمة من هذه القمم واختزلت مساحة 4 قمم الأخرى. تم اختبار قدرة جسيمات الفضية النانوية في الحفاظ على فعاليتها في ظل ظروف التخزين المبردة لمدة ستة أشهر ومقارنتها بقدرة العزلة الفطرية قبل إنتاج جسيمات الفضة النانوية. أظهرت النتائج عدم وجود تغيرات معنوية في حجم وشكل وكفاءة جزيئات الفضة النانوية في معالجة الملوثات النفطية في الماء. اشارت النتائج إلى الكفاءة العالية لجسيمات الفضة النانوية مقارنة بالمواد الكيميائية في معالجة الملوثات البترولية وكذلك تعزيز قابلية الذوبان والاستحلاب وتفكك الهيدروكربونات. فضلاَ عن، تتميز جزيئات الفضة النانوية بكلف انتاج قليلة وتوفر مواد الانتاج رخيصة الثمن وسهولة وسرعة انتاجها وصديقة للبيئة مقارنة باستخدام المنتجات الكيميائية ذات سمية العالية للأحياء المائية وغالية الثمن وكلفة انتاجيتها العالية فضلاً عن تراكمها في النظام البيئي (غير امنة بيئيا).
Received 12/02/2023
Revised 14/07/2023
Accepted 16/07/2023
Published Online First 20/11/2023
تفاصيل المقالة
هذا العمل مرخص بموجب Creative Commons Attribution 4.0 International License.
كيفية الاقتباس
المراجع
Alexander M, Engel LS, Olaiya N, Wang L, Barrett J, Weems L, et al. The deepwater horizon oil spill coast guard cohort study: A cross-sectional study of acute respiratory health symptoms. Environ Res. 2018; 162: 196-202. https://doi.org/10.1016/j.envres.2017.11.044
Amir-Heidari P, Arneborg L, Lindgren JF, Andreas L, Rosen L, Raie M, et al. state-of-the-art model for spatial and stochastic € oil spill risk assessment: a case study of oil spill from a shipwreck. Environ Int. 2019; 126: 309e320. https://doi.org/10.1016/j.envint.2019.02.037
Mohammed DB, Abbas AH, Ali AMA, Abed EH. Biodegradation of Anthracene Compound by Two Species of Filamentous Fungi. Baghdad Sci J. 2018; 5(1): 43-47. http://dx.doi.org/10.21123/bsj.2018.15.1.0043
Hauptfeld E, Pelkmans J, Huisman TT, Anocic A, Snoek BL, von Meijenfeldt FAB, et al. A metagenomic portrait of the microbial community responsible for two decades of bioremediation of poly-contaminated groundwater. Water Res. 2022; 221:118767. https://doi.org/10.1016/j.watres.2022.118767
Dhar K, Subashchandrabose SR, Venkateswarlu K, Krishnan K, Megharaj M. Anaerobic Microbial Degradation of Polycyclic Aromatic Hydrocarbons: A Comprehensive Review, in: de Voogt, P. (Ed.), Reviews of Environmental Contamination and Toxicology . Springer International Publishing, Cham. 2020; 251 pp. 25–108. https://doi.org/10.1007/398_2019_29.
Liu Q, Tang J, Gao K, Gurav R, Giesy JP. Aerobic degradation of crude oil by microorganisms in soils from four geographic regions of China. Sci Rep. 2017; 7: 14856. https://doi.org/10.1038/s41598-017-14032-5.
Hasson SO, Salman SAk, Hassan SF, Abbas SM. Antimicrobial Effect of Eco- Friendly Silver Nanoparticles Synthesis by Iraqi Date Palm (Phoenix dactylifera) on Gram-Negative Biofilm-Forming Bacteria. Baghdad Sci J. 2021; 18(4): 1149-1156. http://dx.doi.org/10.21123/bsj.2021.18.4.1149.
Alsharari SS, Alenezi MA, Al Tami MS, Soliman M. Recent advances in the Biosynthesis of Zirconium Oxide Nanoparticles and their Biological Applications. Baghdad Sci J. 2023; 20(1): 41-57. https://dx.doi.org/10.21123/bsj.2022.7055
Shah M, Nawaz S, Jan H, Uddin N, Ali A, Anjum S, et al. Synthesis of bio-mediated silver nanoparticles from Silybum marianum and their biological and clinical activities. Mater Sci Eng C Mater Biol Appl. 2020; 112: 110889. https://doi.org/10.1016/j.msec.2020.110889.
Abd-Elhady HM, Ashor MA, Hazem A, Saleh FM, Selim S, El Nahhas N, et al. Biosynthesis and Characterization of Extracellular Silver Nanoparticles from Streptomyces aizuneusis: Antimicrobial, Anti Larval, and Anticancer Activities. Molecules. 2021; 27(1): 212. https://doi.org/10.3390/molecules27010212.
Khalafi T. Phycosynthesis and Enhanced Photocatalytic Activity Of Zinc Oxide Nanoparticles Toward Organosulfur Pollutants. Scie Rep. 2019; 9: 6866. https://doi.org/10.1038/s41598-019-43368-3
Ummidi V, Ravi S, Padmaja V. Preparation and use of oil formulations of Beauveria bassiana and Metarhizium anisopliae against Spodoptera litura larvae. Afr J Microbi Res. 2014; 8(15): 1638-1644. https://doi.org/10.5897/AJMR2013.6593
Rodriguez-Tudela JL, Arendrup MC, Barchiesi F, Bille J, Chryssanthou E, Cuenca-Estrella M, et al. EUCAST Definitive Document EDef 7.1: method for the determination of broth dilution MICs of antifungal agents for fermentative yeasts: Subcommittee on Antifungal Susceptibility Testing (AFST) of the ESCMID European Committee for Antimicrobial Susceptibility Testing (EUCAST). Clin Microbiol Infect. 2008; 14(4): 398-405. https://doi.org/10.1111/j.1469-0691.2007.01935.x
Wijdan AA, Bahrouz MAA, Sajid SSA. Cultivation and Detection of Unculturable Fungi in Soil Using Soil Infusion Agar (SIA). J univ Al-anbar pure sci . 2018; 12(1): 9-18 https://www.iasj.net/iasj/article/152280
Silva WOB, Mitidieri S, Schrank A, Vainstein MH. Production and extraction of an extracellular lipase from the entomopathogenic fungus Metarhizium anisopliae. Process Biochem. 2005; 40(1): 321-326. https://doi.org/10.1016/j.procbio.2004.01.005
Labeeb AA, Marwah TA, Zahraa ZA, Manal MA. Biodegradation of chlorpyrifos pesticide using silver bio-nanoparticles Bacillus thuringiensis israelensis extracts. IOP Conf. Ser.: Earth Environ Sci. 2021; 779: 012113 https://doi.org/10.31830/2348-7542.2019.138
Rheder DT, Guilger M, Bilesky-José N, Germano-Costa T, Pasquoto-Stigliani T, Gallep TBB, et al. Synthesis of biogenic silver nanoparticles using Althaea officinalis as reducing agent: evaluation of toxicity and ecotoxicity. Sci Rep. 2018; 8(1): 12397. https://doi.org/10.1038/s41598-018-30317-9
Osorio-Echavarría J, Osorio-Echavarría J, Ossa-Orozco CP, Gómez-Vanegas NA. Synthesis of silver nanoparticles using white-rot fungus Anamorphous Bjerkandera sp. R1: Influence of silver nitrate concentration and fungus growth time. Sci Rep. 2021; 11(1): 3842. https://doi.org/10.1038/s41598-021-82514-8
Skanda S, Bharadwaj PSJ, Datta Darshan VM, Sivaramakrishnan V, Vijayakumar BS. Proficient mycogenic synthesis of silver nanoparticles by soil derived fungus Aspergillus melleus SSS-10 with cytotoxic and antibacterial potency. J Microbiol Methods. 2022; 199: 106517. https://doi.org/10.1016/j.mimet.2022.106517
Tyagi PK, Mishra R, Khan F, Gupta D, Gola D. Antifungal effects of silver nanoparticles against various plant pathogenic fungi and its safety evaluation on Drosophila melanogaster. Biointerface Res Appl Chem. 2020; 10: 6587-6596. https://doi.org/10.33263/BRIAC106.65876596
Oudot J. Rates of microbial degradation of petroleum components as determined by computerized capillary gas chromatography and computerized mass spectrometry. Marine Environ Res. 1984; 13(4): 277-302. https://doi.org/10.1016/0141-1136(84)90034-5
Al-Zaban MI, Mahmoud MA, AlHarbi MA, Bahatheq AM. Bioremediation of Crude Oil by Rhizosphere Fungal Isolates in the Presence of Silver Nanoparticles. Int J Environ Res Public Health. 2020; 17(18): 6564. https://doi.org/10.3390/ijerph17186564.
Alnafisah AS, Alqrairy E, Tar H, M Alminderej F, Aroua LM, Graff B, et al. Light-Assisted Synthesis of Silver and Gold Nanoparticles by New Benzophenone Derivatives. ACS Omega. 2023 Jan 11; 8(3): 3207-3220. https://doi.org/10.1021/acsomega.2c06655.
Talabani RF, Hamad SM, Barzinjy AA, Demir U. Biosynthesis of Silver Nanoparticles and Their Applications in Harvesting Sunlight for Solar Thermal Generation. Nanomaterials (Basel). 2021 Sep 17; 11(9): 2421. https://doi.org/10.3390/nano11092421.
Inès Hammami a, Nadiyah M. Alabdallah a, Amjad Al jomaa a, Madiha kamoun. Gold nanoparticles: Synthesis properties and applications. J King Saud Univ Sci. 2021; 33(7): 101560. https://doi.org/10.1016/j.jksus.2021.101560
Sonbol H, Mohammed AE, Korany SM. Soil Fungi as Biomediator in Silver Nanoparticles Formation and Antimicrobial Efficacy. Int J Nanomed. 2022; 17: 2843-2863. https://doi.org/10.2147/IJN.S356724
Ammar HA, El-Desouky TA. Green synthesis of nanosilver particles by Aspergillus terreus HA1N and Penicillium expansum HA2N and its antifungal activity against mycotoxigenic fungi. J Appl Microbiol. 2016 Jul; 121(1): 89-100. https://doi.org/10.1111/jam.13140.
Durán N, Marcato PD, Alves OL, De Souza GI, Esposito E. Mechanistic aspects of biosynthesis of silver nanoparticles by several Fusarium oxysporum strains. J Nanobiotechnology 2005 Jul;3: 1-7.
Honary S, Barabadi H, Gharaei-Fathabad E, Naghibi F. Green synthesis of silver nanoparticles induced by the fungus Penicillium citrinum. Tropical J Pharma Res. 2013; 12(1): 7-11. https://doi.org/10.4314/tjpr.v12i1.2
Bocate KP, Reis GF, de Souza PC, Oliveira Junior AG, Durán N, Nakazato G, et al. Antifungal activity of silver nanoparticles and simvastatin against toxigenic species of Aspergillus. Int J Food Microbiol. 2019; 291:79-86. https://doi.org/10.1016/j.ijfoodmicro.2018.11.012.
Phanjom P, Ahmed G. Biosynthesis of silver nanoparticles by Aspergillus oryzae (MTCC No. 1846) and its characterizations. J. Nanosci and Nanotechnol. 2015; 5 (1): 14-21. https://doi.org/10.5923/j.nn.20150501.03.
Lengke MF, Fleet ME, Southam G. Biosynthesis of silver nanoparticles by filamentous cyanobacteria from a silver(I) nitrate complex. Langmuir. 2007; 23(5): 2694-9. https://doi.org/10.1021/la0613124.
Priyadarshini E, Priyadarshini SS, Cousins BG, Pradhan N. Metal-Fungus interaction: Review on cellular processes underlying heavy metal detoxification and synthesis of metal nanoparticles. Chemosphere. 2021; 274: 129976. https://doi.org/10.1016/j.chemosphere.2021.129976
Dada AO, Adekola FA, Dada FE, Adelani-Akande AT, Bello MO, Okonkwo CR, et al. Silver nanoparticle synthesis by Acalypha wilkesiana extract: phytochemical screening, characterization, influence of operational parameters, and preliminary antibacterial testing. Heliyon. 2019; 5(10): e02517. https://doi.org/10.1016/j.heliyon.2019.e02517
Elamawi RM, Al-Harbi RE, Hendi AA. Biosynthesis and characterization of silver nanoparticles using Trichoderma longibrachiatum and their effect on phytopathogenic fungi. Egypt J Biol Pest Control. 2018; 28(1): 1-11. https://doi.org/10.1186/s41938-018-0028-1
AbdelRahim K, Mahmoud SY, Ali AM, Almaary KS, Mustafa AE, Husseiny SM. Extracellular biosynthesis of silver nanoparticles using Rhizopus stolonifer. Saudi J Biol Sci. 2017; 24(1): 208-216. https://doi.org/10.1016/j.sjbs.2016.02.025
Soleimani P, Mehrvar A, Michaud JP, Vaez N. Optimization of silver nanoparticle biosynthesis by entomopathogenic fungi and assays of their antimicrobial and antifungal properties. J Invertebr Pathol. 2022; 190: 107749. https://doi.org/10.1016/j.jip.2022.107749
Tyagi S, Tyagi PK, Gola D, Chauhan N, Bharti RK. Extracellular synthesis of silver nanoparticles using entomopathogenic fungus: Characterization and antibacterial potential. SN Appl Sci. 2019; 1: 1545. https://doi.org/10.1007/s42452-019-1593-y.
Abdellatif AAH, Alturki HNH, Tawfeek HM. Different cellulosic polymers for synthesizing silver nanoparticles with antioxidant and antibacterial activities. Sci Rep. 2021; 11(1): 84. https://doi.org/10.1038/s41598-020-79834-6
Mustafa AA, Shaymaa AA, Hamid TA. Biodegradation of crude oil using Aspergillus species. J. Biol Agric Healthcare. 2019; 9(4): 60-64. https://doi.org/10.7176/JBAH
Singh P, Pandit S, Jers C, Joshi AS, Garnæs J, Mijakovic I. Silver nanoparticles produced from Cedecea sp. exhibit antibiofilm activity and remarkable stability. Sci Rep. 2021; 11(1): 12619. https://doi.org/10.1038/s41598-021-92006-4
Novianty R, Hidayah A, Saryono S, Awaluddin A, Pratiwi Nw, Juliantari E. The diversity of fungi consortium isolated from polluted soil for degrading petroleum hydrocarbon. Biodiversitas. 2021; 22 (11): 5077-5084. https://doi.org/10.13057/biodiv/d221145.
Bakri M. Assessing some Cladosporium species in the biodegradation of petroleum hydrocarbon for treating oil contamination. J Appl Microbiol. 2022; 133(6): 3296-3306. https://doi.org/10.1111/jam.15815
Merv Fingas. Introduction to Oil Chemistry and Properties Related to Oil Spills. H. Wilkes (ed.), Hydrocarbons, Oils and Lipids: Diversity, Origin, Chemistry and Fate, Handbook of Hydrocarbon and Lipid Microbiology, Springer Nature Switzerland AG 2020; 1-32. https://doi.org/10.1007/978-3-319-54529-5_29-1