Effect of biotic and abiotic elicitors on Salvadora persica callus in vitro

Authors

  • Hadaia Y. Jasim Jasim Department of Biology, College of Science for Women, University of Baghdad, Baghdad, Iraq. https://orcid.org/0009-0004-4573-8532
  • Hadeel M. Habeeb Department of Biology, College of Science for Women, University of Baghdad, Baghdad, Iraq.

DOI:

https://doi.org/10.21123/bsj.2024.9439

Keywords:

Chitosan, Flavonoids, HPLC, Salvadora persica, Titanium dioxide

Abstract

The research was conducted to study the effect of different concentrations of nanoparticles (chitosan and titanium dioxide) of Fusarium oxysporum as elicitors to increase the production of active compounds from Salvadora persica callus. Determine the total flavonoids and alkaloids rustle that chitosan in 5 mg/L, titanium dioxide in 1 mg/L, and Fusarium oxysporum in 5 mg/L give 93.10 mg100mg, 128.7 mg/100mg, and 107.61 mg/100mg respectively whereas alkaloids give 2.39%, 3.91%, and 2.20 % respectively. The results showed superiority in the presence of flavonoids in the samples compared with alkaloids. HPLC (High-performance liquid chromatography) analysis shows significant differences in increasing flavonoid production (Rutin, Kaempferol, Quercetin, Catechin, Luteolin, and Apigenin) the addition of chitosan at 5 mg/L led to an increase in the production of Rutin, at 39.89mg/L. As for the induced callus treated with titanium dioxide at 1 mg/L, it increased Rutin to 35.89mg/L. While Rutin increased its production to 30.12 mg/L when treated with Fusarium oxysporum at 5 mg/l.

References

Walton NJ, Brown DE. Chemicals from Plants: Perspectives on Plant Secondary Products. 1thed. London: World Scientific; 1999. 1–25. https://doi.org/10.1142/9789812817273_0001

Bourgaud F, Gravot A, Milesi S, Gontie E. Production of plant secondary metabolites: a historical perspective. Plant Sci. 2001; 161(5): 839-851. https://doi.org/10.1016/S0168-9452(01)00490-3

Kikowska M, Thiem B, Szopa A, Ekiert H. Accumulation of Valuable Secondary Metabolites: Phenolic Acids and Flavonoids in Different in Vitro Systems of Shoot Cultures of the Endangered Plant Species-Eryngium alpinum L. Plant Cell Tissue Organ Cult. 2020; 141(2): 381–391. https://doi.org/10.1007/s11240-020-01795-5

Yue W, Ming Q, Lin B, Rahman K, Zheng C, Han T, et al. Medicinal Plant Cell Suspension Cultures: Pharmaceutical Applications and High-Yielding Strategies for the Desired Secondary Metabolites. Crit Rev Biotechnol. 2016; 36(2): 215–232. https://doi.org/10.3109/07388551.2014.923986

Yang L, Wen KS, Ruan X, Zhao YX, Wei F, Wang Q. Response of plant secondary metabolites to environmental factors Molecules. 2018; 23(4): 762. https://doi.org/10.3390/molecules23040762

Radman R, Saez T, Bucke C, Keshavarz T. Elicitation of plants and microbial cell systems. Biotechnol Appl Biochem. 2003; 37(1): 91-102. https://doi.org/10.1042/BA20020118

Thakur M, Bhattacharya S, Khosla P, Puri SK. Improving production of plant secondary metabolites through biotic and abiotic elicitation. J Appl Res Med Aromat. Plants. 2019; 12(7): 1-12. https://doi.org/10.1016/j.jarmap.2018.11.004

Vasconsuelo A, Boland R. Molecular aspects of the early stages of elicitation of secondary metabolites in plants. Plant Sci. 2007; 172(5): 861–875. https://doi.org/10.1016/j.plantsci.2007.01.006

Wang JW, Wu JY. Effective elicitors and process strategies for enhancement of secondary metabolite production in hairy root cultures, in: Doran P. M. (Ed.), Biotechnology of Hairy Root Systems. Adv Biochem Eng Biotechnol. 2013; 134: 55–89. https://doi.org/10.1007/10_2013_183

Ghormade V, Pathan EK, Deshpande MV. Can fungi compete with marine sources for chitosan production. Int. J Biol Macromol. 2017; 104(B): 1415-1421. https://doi.org/10.1016/j.ijbiomac.2017.01.112

Baldi A, Srivastava AK, Bisaria VS. Fungal elicitors for enhanced production of secondary metabolites. in plant cell suspension cultures. In: Varma A, Kharkwal AC (eds). Symbiotic Fungi. Springer. 2009; 18(1): 373–380. https://doi.org/10.1007/978-3-540-95894-9_23

Zhai X, Jia M, Chen L, Zheng C, Rahman K, Han T, et al. The regulatory mechanism of fungal elicitor-induced secondary metabolite biosynthesis in medical plants. Crit Rev Microbiol. 2017; 43(2): 238–261. https://doi.org/10.1080/1040841X.2016.1201041

Shakya P, Marslin G, Siram K, Beerhues L, Franklin G. Elicitation as a tool to improve the profiles of high‐value secondary metabolites and pharmacological properties of Hypericum perforatum. J Pharm Pharmacol. 2019; 71(1): 70-82. https://doi.org/10.1111/jphp.12743

Khan I, Saeed K, Khan I. Nanoparticles: Properties, applications and toxicities. Arab J Chem. 2019; 12(7): 908-931. https://doi.org/10.1016/j.arabjc.2017.05.011

Greene MK, Johnston MC, Scott CJ. Nanomedicine in Pancreatic Cancer: Current Status and Future Opportunities for Overcoming Therapy Resistance. J Cancer. 2021; 13(24): 6175. https://doi.org/10.3390/cancers13246175

Brunner TI, Wick P, Manser P, Spohn P, Grass RN, Limbach LK. In vitro cytotoxicity of oxide nanoparticles: Comparison to asbestos, silica, and the effect of particle solubility. Environ Sci Technol. 2016; 40(14): 4374–4381. https://doi.org/10.1021/es052069i

Behra R, Krug H. Nanoecotoxicology: nanoparticles at large. Nat Nanotechnol. 2008; 3(5): 253–254. https://doi.org/10.1038/nnano.2008.113

Chen SL, Yu H, Luo HM, Wu Q, Li CF, Steinmetz A. Conservation and sustainable use of medicinal plants: problems, progress, and prospects. Chinas Med. 2016; 11(1): 37. https://doi.org/10.1186/s13020-016-0108-7

Al-Khazali SRKH, Hamed MS. Influence of growth regulators on callus induction of citrus volkameriana in vitro. Iraqi J Agric Sci. 2016; 47(3): 723-731. https://doi.org/10.36103/ijas.v47i3.561

Al-mafargi KIR. Study the Effect of Some Biotic and Abiotic Factors on Enhancement of Essential Oils and Rosmarinic Acid in Rosemary Rosmarinus officinalis L. In vitro. MSc. Thesis, Department of biotechnology. Al-Nahrain University; 2010.

Majid RK, Hassan R, Roya H, Mohammad HM. Effect of photoperiod and plant growth regulators on in vitro mass bulblet proliferation of Narcissus tazzeta L. (Amaryllidaceae), a potential source of galantamine. Plant Cell Tissue Organ Cult. 2020; 142(1): 187–199. https://doi.org/10.1007/s11240-020-01853-y

Zainab AAA, Hadeel MH, Liqaa AJ. morphological, anatomical and chemical study of an exotic plant jatropha integeeeima jacq.1763(Euphorbiaceae) in Iraq. Iraq Nat Hist Mus. 2022; 17 (1): 129-140. https://doi.org/10.26842/binhm.7.2022.17.1.0129

Trease GE, Evans WC. Pharmacognosy. 15th Edition, Saunders Publishers, London. 2002; 336

Ajanal M, Gundkalle MB, Nayak SU. Estimation of total alkaloid in Chitrakadivati by UV-Spectrophotometer. Anc Sci Life. 2012; 31(4): 198–201. https://doi.org/10.4103/0257-7941.107361

Habibatni O, Fatma AZ, Khalida H, Anwar S, Mansi I, Ali N. In-vitro antioxidant, Xanthine oxidase-inhibitory and in-vivo Anti-inflammatory, analgesic, antipyretic activity of Onopordum acanthium. Int J Phytomedicine. 2017; 9(1): 92-100.

Ngamsuk S, Huang T, Hsu J. Determination of Phenolic Compounds, Procyanidins, and Antioxidant Activity in Processed Coffea arabica L. Leaves. Foods. 2019; 8(9): 389. https://doi.org/10.3390/foods8090389

Al-Abide N. M morphological and chemical characteristics of two substance belong to alysseae and lepidieae tribes spread in northern Iraq. Iraqi J Agric Sci. 2022; 53(4): 911–921. https://doi.org/10.36103/ijas.v53i4.1603

SAS. 2018. Statistical Analysis System, User's Guide. Statistical. Version 9.6th ed. SAS. Inst. Inc. Cary. N.C. USA.

Hassan FAS, Ali E, Fetouh MI, Mazrou R. Chitosan nanoparticles effectively combat salinity stress by enhancing antioxidant activity and alkaloid biosynthesis in Catharanthus roseus (L.) G. Don. Plant Physiol Biochem.2021; 162(1): 291-300. https://doi.org/10.1016/j.plaphy.2021.03.004

Bandara S, Du H, Carson L, Bradford D, Kommalapati R. Agricultural and biomedical applications of chitosan-based nanomaterials. Nanomater. 2020; 10(10): 1903. https://doi.org/10.3390/nano10101903

Chandra SN, Chakraborty A, Chakraborty R, Rai B, Bera K. Abiotic elicitor mediated improvement of innate immunity in Camellia sinensis. J Plant Growth Regul. 2014; 33(4): 849-859. https://doi.org/10.1007/s00344-014-9436-y

Pirbalouti AG, Malekpoor F, Salimi A, Golparvar AR. Exogenous application of chitosan on biochemical and physiological characteristics, phenolic content and antioxidant activity of two species of basil (Ocimum ciliatum and Ocimum basilicum) under reduced irrigation. Sci Hortic. 2017; 217(10): 114–22. https://doi.org/10.1016/j.scienta.2017.01.031

Li Z, Zhang Y, Zhang X, Merewitz E, Peng Y, Ma X. Metabolic pathways regulated by chitosan contributing to drought resistance in white clover. J Proteome Res. 2017; 16(8): 3039–52. https://doi.org/10.1021/acs.jproteome.7b00334

Ullah S, Adeel M, Zain M, Rizwan M, Irshad MK, Jilani G, et al. Physiological and Biochemical Response of Wheat (Triticum aestivum) to TiO2 Nanoparticles in Phosphorous Amended Soil: A Full Life Cycle Study. J Environ. Manage. 2020; 263(1): 110365. https://doi.org/10.1016/j.jenvman.2020.110365

Hu J, Wu X, Wu F, Chen W, White JC, Yang Y, et al. Potential Application of Titanium Dioxide Nanoparticles to Improve the Nutritional Quality of Coriander (Coriandrum sativum L.) J Hazard Mater. 2020; 389(11): 121837–121837. https://doi.org/10.1016/j.jhazmat.2019.121837

Missaoui T, Smiri M, Chemingui H, Jbira E, Hafiane A. Regulation of Mitochondrial and Cytosol Antioxidant Systems of Fenugreek (Trigonella foenum graecum L.) Exposed to Nanosized Titanium Dioxide.Bull. Environ. Contam. Toxicol. 2018; 101(3): 326–337. https://doi.org/10.1007/s00128-018-2414-5

Missaoui T, Smiri M, Chmingui H, Hafiane A. Effects of Nanosized Titanium Dioxide on the Photosynthetic Metabolism of Fenugreek (Trigonella foenum-graecum L.). Comptes Rendus Biol. 2017; 340(11): 499–511. https://doi.org/10.1016/j.crvi.2017.09.004

Desender S, Andrivon D, Val F. Activation of defense reactions in Solanaceae: where is the specificity. Cell Microbiol. 2007; 9 (1): 21-30. https://doi.org/10.1111/j.1462-5822.2006.00831.x

Dabagh SA. Comparative analysis of some phenolic acids of in vitro and in vivo growth plant leaves of salvia hispanica. Iraqi J Agric Sci. 2021; 52(1): 189-195. https://doi.org/10.36103/ijas.v52i1.1250

Neamah SI. Inducing some secondary metabolites from callus cultures derived from Plantago psyllium and Plantago major exposed to cobalt stress. Iraqi J Agric Sci. 2020; 51(3): 938-943. https://doi.org/10.36103/ijas.v51i3.1049

Ghussun SS. Effect of plant growth regulators on callus induction and Rutin production of Ricinus communis Plant. Baghdad Sci J. 2017; 14(3): 0461. https://doi.org/10.21123/bsj.2017.14.3.0461

Downloads

Published

2024-09-01

Issue

Section

article

How to Cite

1.
Effect of biotic and abiotic elicitors on Salvadora persica callus in vitro . Baghdad Sci.J [Internet]. 2024 Sep. 1 [cited 2024 Dec. 24];21(9):2829. Available from: https://bsj.uobaghdad.edu.iq/index.php/BSJ/article/view/9439

Similar Articles

You may also start an advanced similarity search for this article.